UW Energy Talks Dive Deep into Boeing Biofuels, Smart Grid Savings, and Solar Cells

food, water, or deforestation, Rahmes added.

Boeing has used four types of biofuels in engine tests and flight tests—produced from jatropha, halophytes, algae, and camelina feedstocks. There are various tradeoffs between the plant types—for instance, algae can produce a lot of oil, but the challenge is how to extract it efficiently, so it is probably eight to 10 years away from commercial use.

Several companies we’ve reported on at Xconomy have been involved in these tests. Seattle-based Imperium Renewables provided biofuel for a Virgin Atlantic engine test about a year ago. San Diego-based Sapphire Energy (backed locally by Arch Venture Partners and Bill Gates) provided algae-based biofuel for a test with Continental Airlines a few months ago. And most recently, Seattle-based Targeted Growth grew the camelina used for a flight test with Japan Airlines.

Rahmes detailed the painstaking steps necessary to lower the freezing point of these biofuels (and tune other properties) for flight use. But so far, so good—his team is seeing “equivalent or better-than performance,” of biofuels as compared to conventional jet fuel, in terms of both power and emissions. “We’ve tested the feasibility,” Rahmes said. “Now we need to drive commercial viability…At Boeing, we hope to hit an inflection point, like windmills did, for aviation biofuels.”

—Alex Jen, a professor of materials science and engineering at UW, spoke about thin-film, printable organic solar cells—a technology that could make solar power much more affordable. (Last month, Rachel wrote about Jen’s research, and a new startup that is forming around it, called Soluxra.)

Jen made the case that energy is the No. 1 problem facing the world in the next 50 years, ahead of other issues like water, food, and disease. What’s more, cleantech is the key to protecting the environment. “Coal and oil can last hundreds of years, but burning fossil fuels causes global warming,” he said. “Renewable and clean energy is the solution.”

Solar power still makes up only a tiny fraction of the world’s energy consumption, because conventional silicon-based solar cells are so costly to make. Jen’s group has developed methods to print out thin films of polymer-based solar cells that are cheap, stable, and relatively efficient at converting sunlight into electricity. (The knock on organic solar cells has always been that they don’t provide enough juice.)

One key, said Jen, is to develop the right kind of light-harvesting polymers that absorb a greater portion of the solar spectrum so the sunlight will knock more electrons and “holes” (positive charges) free inside the material. Then there is plenty of work in surface engineering and nano-scale materials to get the polymer solar cell to collect more of the free electrons and holes in the nanoseconds before they can recombine, in order to produce more electricity. Jen said the remaining challenge, beyond boosting the efficiency of the materials, will be ramping up the production of massive sheets of the materials, which could eventually cover large areas in the desert, office buildings, and even car windows.

But at the end of the day, the best line came from Guozhong Cao, also a UW professor in materials science and engineering. Cao (pronounced “Chow”) leads the lab that spun out the energy storage technology behind Seattle-based EnerG2 (backed locally by OVP Venture Partners). Cao was speaking about how crucial it is to do the practical, nuts-and-bolts work to turn all these grand research ideas—nanostructures, nanocrystals, nanomaterials—into commercial technologies. “Engineering is important,” he said, “because we don’t want to live in a nano-house and make a nano-salary.”

Author: Gregory T. Huang

Greg is a veteran journalist who has covered a wide range of science, technology, and business. As former editor in chief, he overaw daily news, features, and events across Xconomy's national network. Before joining Xconomy, he was a features editor at New Scientist magazine, where he edited and wrote articles on physics, technology, and neuroscience. Previously he was senior writer at Technology Review, where he reported on emerging technologies, R&D, and advances in computing, robotics, and applied physics. His writing has also appeared in Wired, Nature, and The Atlantic Monthly’s website. He was named a New York Times professional fellow in 2003. Greg is the co-author of Guanxi (Simon & Schuster, 2006), about Microsoft in China and the global competition for talent and technology. Before becoming a journalist, he did research at MIT’s Artificial Intelligence Lab. He has published 20 papers in scientific journals and conferences and spoken on innovation at Adobe, Amazon, eBay, Google, HP, Microsoft, Yahoo, and other organizations. He has a Master’s and Ph.D. in electrical engineering and computer science from MIT, and a B.S. in electrical engineering from the University of Illinois, Urbana-Champaign.