if you look at the potential of the company it’s extraordinary,” Banks said, “but I’ve seen some evidence that there’s a lot of interest in these markets and there are a lot of large players.”
Because Banks sent me collagen-platelet study, which was published in a recent issue of the American Journal of Sports Medicine, I’m led to believe that it’s quite possible that Connective’s experimental product is a close match to the scaffold in the study. The lead investigator of the study, Brown University professor Braden Fleming, is a scientific advisor to the company. Also, the company’s scientific founders—Children’s Hospital Boston orthopedic surgeon Martha Murray and Vanderbilt University Medical School orthopedics professor Kurt Spindler—also participated in the research. Connective licensed its technology from Children’s Hospital and Vanderbilt. Yet even the company’s website makes no mention of platelet-collagen technology.
There are some large companies interested in using collagen to improve tissue repair. Locally, Organogenesis produces patches that use collagen from pigs. The Canton, MA-based firm has a collagen-based scaffold for use in tendon repair that was developed with major orthopedic products maker Biomet, headquartered in Warsaw, IN. (Collagen is useful to improve healing because it can support re-growth of tissue, according to Organogenesis.) Those are just a couple of the firms out there that could be considered Connective’s competition in providing products laced with biological materials to promote soft tissue healing. But Banks said he doesn’t consider those companies competition at this point because his firm has a unique (albeit secret) product to offer.
Banks also wanted to keep secret the firm’s timeline for conducting human clinical trials and launching its first product onto the market. But he did tell me that his company has raised $4 million in early funding from Waltham-based Norwich Ventures, which focuses on making investments in medical devices firms. (In fact, Aaron Sandoski, chairman of Connective and managing director at Norwich, introduced me to Banks back in June.)
Banks and I talked quite a bit about ligament reconstruction, though, and the opportunities to improve how well people recover from ACL injuries. For starters, ACLs connect our thighbones to our shinbones, putting them in harms way when football players are tackled at or below the knees (just ask Tom Brady.) As mentioned, the standard approach to address ACL injuries is ACL reconstruction, which involves surgery to remove the damaged ligament and replace it with tissue taken from another part of the patient’s own knee, hamstring, or from an outside source such as a human cadaver. Here’s a link to a pretty good description of how arthroscopic ACL reconstruction is done.
According to the National Institutes of Health, ACL reconstruction is typically a very successful surgery. Yet in some cases the repaired knee is weaker than before or can’t move with the same freedom as it could prior to the surgery. Banks said that patients who undergo these surgeries are also more likely to develop osteoarthritis in their knees, and his company hopes to someday provide a product to remedy that problem and others.