Inside the Mascoma Labs: Tracking Ethanol-Making Microbes from Lebanon to Rome

Microbiologist Larry Feinberg has dug into piles of waste from paper factories and explored hot springs in the West for microbes that he calls “tough bugs,” because of their ability to thrive in adverse conditions. The fierce bacteria are now shipped to the new labs and headquarters of Mascoma, a developer of cellulosic ethanol, in Lebanon, NH.

This week, Mascoma scientists gave me an inside look at the Lebanon labs where Feinberg and his colleagues are developing microorganisms to inexpensively turn materials such as wood chips, switch grass, and corn stalks into ethanol for fueling automobiles and machinery. Mascoma’s plans for streamlining the process of making cellulosic ethanol have been known since it launched with initial venture financing from Flagship Ventures and Khosla Ventures in 2006, but these are particularly exciting times at the company. In April, scientists at the firm were able to demonstrate their streamlined process in a lab experiment. The firm is now scaling up the process at a pilot production facility in Rome, NY, and plans call for completing one of the first commercial-scale cellulosic ethanol plants in Kinross, MI, by 2012.

Mascoma’s process is novel, for starters, because it would not require the use of food crops such as corn or soybeans, which are typically used to make ethanol. Ethanol production has driven up corn prices in recent years, and the total costs of producing such ethanol is high in part because lots of water and land resources are required to grow those feedstocks. Yet cellulosic ethanol production, which is Mascoma’s bread and butter, has plenty of challenges too. With traditional biochemical methods, enzymes are needed to digest the plant materials into sugars, and then yeast or bacteria are required to ferment the sugar to make ethanol. Mascoma’s key innovations include microbes that are genetically engineered to perform both those chores in a single step, making the process potentially more affordable than first thought.

Nathan Margolis, a lab manager at Mascoma, walked me through the labs that the company moved into about two months ago to explain how the firm is trying to harness a process which has been happening for hundreds of millions of years in nature, where bacteria are eating and digesting wood and grass and other plants to survive. “There’s a battle going on out there between the trees and the microbes trying to eat them alive,” Margolis said. “We’ve entered that battle on the side of the microbes” to produce ethanol from renewable sources.

We toured a lab where incubators were shaking up test tubes and glass bottles of yellow liquids that contained microorganisms. Here, the organisms are scrutinized and the genes that make them effective ethanol makers are identified. In nature, bacteria are particularly adept at digesting wood and other materials into sugar, but yeast are typically better at fermenting the sugar to make ethanol, or alcohol. Mascoma is reconfiguring the genes of yeast and bacteria so that each can perform both of those tasks in a single step. One of the firm’s leading microorganisms that can do this is

Author: Ryan McBride

Ryan is an award-winning business journalist who contributes to our life sciences and technology coverage. He was previously a staff writer for Mass High Tech, a Boston business and technology newspaper, where he and his colleagues won a national business journalism award from the Society of American Business Editors and Writers in 2008. In recent years, he has made regular TV appearances on New England Cable News. Prior to MHT, Ryan covered the life sciences, technology, and energy sectors for Providence Business News. He graduated with honors from the University of Rhode Island in 2001 with a bachelor’s degree in communications. When he’s not chasing down news, Ryan enjoys mountain biking and skiing in his home state of Vermont.