Stealthy Gen9 Rolls Out BioFab for Large-Scale Gene Manufacturing

For the past three years, Cambridge, MA-based Gen9 has been quietly building something that its founders believe has been sorely lacking in biotech: an affordable and efficient way to synthesize genes on a massive scale. Those founders are pioneers in the field of synthetic biology: Joseph Jacobson, an MIT professor and specialist in the field of using biology to create machines; George Church, genetics professor at Harvard Medical School and one of the original developers of genomic sequencing tools; and Drew Endy, a Stanford faculty member who specializes in bioengineering.

Now Gen9 is starting to market its founders’ creation, a technology called BioFab, which is designed to generate tens of thousands of different. synthetic gene fragments per year. Gen9 is marketing its capabilities to companies that use genes to create engineered cells, which in turn make products such as chemicals or biologic materials. Gen9’s target customer base includes pharmaceutical companies, biofuels producers, agricultural firms, and enzyme makers.

In preparation for the rollout, Gen9 expanded its senior leadership team last week, elevating chief business officer Kevin Munnelly to CEO and bringing on Martin Goldberg, previously of Santa Clara, CA-based Affymetrix, as COO. The company also plans to raise a Series C this fall. According to SEC documents, Gen9 has raised more than $7 million in equity and debt so far. Its investors include Draper Fisher Jurvetson, PBM Capital, and unnamed individuals.

There are dozens of companies jumping into the field of gene manufacturing, including Integrated DNA Technologies of Coralville, Iowa, DNA 2.0 of Menlo Park, CA, and the rapidly expanding Carlsbad, CA-based Life Technologies. Munnelly, who previously worked in a genomics-solutions unit of Life Technologies, says he was drawn to Gen9 last November by its ability to apply principals of large-scale industrial manufacturing to synthetic biology. “I’m very passionate about the effect synthetic biology can have on the research community and on human health,” Munnelly says. “This was the first time I had seen a company with a game-changing approach.”

That approach, Munnelly says, “allows us to build genes faster, better, cheaper.” Say a company wants to string together different genetic fragments to produce an enzyme with special characteristics. Normally that company would have to synthesize each gene construct one at a time—an expensive and very slow process. Gen9 transform designs from customers into

Author: Arlene Weintraub

Arlene is an award-winning journalist specializing in life sciences and technology. She was previously a senior health writer based out of the New York City headquarters of BusinessWeek, where she wrote hundreds of articles that explored both the science and business of health. Her freelance pieces have been published in USA Today, US News & World Report, Technology Review, and other media outlets. Arlene has won awards from the New York Press Club, the Association of Health Care Journalists, the Foundation for Biomedical Research, and the American Society of Business Publication Editors. Her book about the anti-aging industry, Selling the Fountain of Youth, was published by Basic Books in September 2010.