EnerG2 Takes Energy Storage Innovation From UW Lab to Factory

A year after opening a $28.5 million factory, Seattle-based EnerG2 is looking like a textbook example of laboratory innovation in a strategically important industry generating U.S. high-tech manufacturing jobs, with an assist from Uncle Sam.

Someone page Joe Biden.

The company got a $21.3 million Department of Energy stimulus grant covering three-quarters of the cost to build a 72,000-square-foot facility in Albany, OR. It opened about a year ago and is now capable of producing tens of tons a month of high-surface-area activated carbon that can be “tuned” for a range of energy storage applications. That works out to enough material each year for about 60,000 electric cars, though output varies with customer demand.

EnerG2 isn’t saying anything about how much revenue it is generating or whether it is profitable, so don’t break out the champagne just yet. Backed to the tune of $24 million in venture capital over the last five years—including a $9.4 million round raised late last year— the company has about 50 employees, split between headquarters and R&D in Seattle, and manufacturing in Albany, where more of the growth is occurring as manufacturing output ramps up.

Co-founder and chief executive Rick Luebbe says EnerG2 now has relationships with more than 100 companies—some in the Fortune 50. Some companies are still testing its materials, while others are exploring product development partnerships, or have become paying customers for one of its two commercial products: high-purity activated carbon used in ultra capacitors, or as an additive to lead-acid batteries to improve their performance in the type of duty cycles seen in hybrid vehicles.

“We have a relatively long list of customers engaged for both systems,” Luebbe says, though they are skittish about being named. “When they recognize the competitive advantage, they don’t want their competitors to know how they’re getting it.”

The company has just completed the International Organization for Standardization‘s quality management certification, which Luebbe says will accelerate a change in perception that has benefitted EnerG2.

“We have observed—and it should have been obvious—that customer engagement radically shifted when the factory came on line and there was confidence in our ability to produce,” Luebbe says. The ISO9001 certification “shows the world our manufacturing facility is set up in a way to support long-term customer projects.”

Rick Luebbe

EnerG2’s story, which we’ve tracked through the last several years, starts at the University of Washington, where co-founder Aaron Feaver was completing his PhD work in 2003 on a “carbon technology platform,” initially envisioned as a storage solution for hydrogen and later methane.

Those markets were slow to develop, and EnerG2 might still be waiting had it not turned its attention in 2006 to electricity storage.

The platform uses commodity organic chemicals in a controlled polymerization reaction—a derivation of the sol-gel process, for the materials science experts—to create a polymer subsequently processed into high-surface-area activated carbon with specific properties that can be optimized for different energy storage applications.

“We can change the molecular structure by changing the fundamental organic chemicals, catalysts, ratios, and reactions,” Luebbe explains. “There are lots of levers to toggle to get very different structures.”

The same technology platform can be applied to the company’s manufacturing infrastructure to produce activated carbon with attributes such as surface area, density, and pore structure, size distribution, and volume tuned for specific battery chemistries, or to store other energy sources such as methane.

EnerG2 believes its advantage lies not only in the purity and “tunability” of its carbon relative to organic feedstocks such as coconut shells, but also in

Author: Benjamin Romano

Benjamin is the former Editor of Xconomy Seattle. He has covered the intersections of business, technology and the environment in the Pacific Northwest and beyond for more than a decade. At The Seattle Times he was the lead beat reporter covering Microsoft during Bill Gates’ transition from business to philanthropy. He also covered Seattle venture capital and biotech. Most recently, Benjamin followed the technology, finance and policies driving renewable energy development in the Western US for Recharge, a global trade publication. He has a bachelor’s degree from the University of Oregon School of Journalism and Communication.