Futuristic “Human-on-Chip” Models Will Help Drug Development

in vitro models since the founding of his Wyss Institute (whose delightful full name is the “Wyss Institute for Biologically Inspired Engineering”). His strong academic work in sophisticated in vitro tissue engineering reaches back to the early 1990s. As Walsh writes, “Recent efforts have led to fully functioning “organs-on-a-chip,” named with a nod to their roots in microchip manufacturing. A critical and deceptively simple benefit of these organs-on-a-chip is that they simulate, in a rudimentary way, the mechanical motion essential to organ function.”

Ingber’s lab is in the lead in this area, especially in lung models. I wrote about Ingber’s work here in 2010. Walsh writes:

“The physical mechanics of organs-on-a-chip—the lung-on-a-chip can “breathe” like a normal lung—provide an essential advantage over inert cells grown in a petri dish. For instance, in a recent experiment conducted by Ingber’s lab, when a set of the lungs-on-a-chip that could “breathe” were dosed with the cancer medication interleukin-2, they were afflicted by a well-documented side effect of the medication in humans, severe pulmonary edema; only mild symptoms appeared in a model of the lungs-on-a-chip that didn’t breathe. ‘We’ve ignored mechanics for a century,’ Ingber said.”

These single-organ models are impressive. Last month, the Wyss Institute signed a collaboration at undisclosed terms on the development of human and animal “organs-on-chips” for safety testing.

In some cases, less sophisticated models in tissues such as liver and skin have already become industry standards. I wrote about these models, and the likely future of this field, here in 2009.

More ambitious models are on the way. As Walsh’s post mentions in a brief aside, there are a few efforts from “a handful of labs worldwide [that] have so far constructed a system with more than one organ.”

One of these is in Berlin, Germany, where TissUse, a CBT Advisors client, is pioneering perhaps the most advanced of these efforts. Recognizing that the secret to mimicking complex biology in culture lies in a combination of organ architecture and live circulation, TissUse, spun out of Berlin’s Technical University in 2010. It has built its platform around organoids, the minimal functional units of organs. These include liver lobules, skin segments, kidney nephrons and the lining of the intestine. These organoids can be bathed in appropriate nutrients, and have waste products taken away, at the same scale at which they are served by capillaries in the body. Scale is extremely important in biology. This effort to mimic the natural scale of organ biology makes the TissUse system both robust and modular.

It’s not a perfect analogy, but organoids can be thought of as similar to the transistors that started to replace vacuum tubes in the 1950s. Transistors made modern electronics – laptops, mobile phones, tablets – possible. Similarly, organoids open up vast possibilities. The technologies for first creating them and then packing them optimally onto chips are still in their infancy. For more on TissUse and their organoid-based approach, please go to the longer version of this post on my blog Boston Biotech Watch.

Besides TissUse, the most advanced company that we found to be working on multi-organ models is Hurel, founded in 2006 by Michael Shuler of Cornell University. Hurel raised Series A funds from hedge fund Spring Mountain Capital in April. The Hurel web site talks about “products under development for future release” that involve “fluidically mediated metabolic interaction of different cell-based models drawn from or representing different bodily organs, such as liver-with-heart and liver-with-kidney combinations.”

Hemoshear of Charlottesville, VA, has set an emerging industry standard for “vascular pharmacology” by including the impact of dynamic blood flow on cells in culture. Founded in 2008 out of the nearby University of Virginia, Hemoshear was reported in 2012 to have 10 biopharmaceutical industry customers. The company puts cells of different organs, most recently liver, into their dynamic systems that push blood past the liver cells. That allows them to get a high-quality look at liver toxicity, drug metabolism and drug-drug interactions. Aside from the useful combination of different organs with vasculature, the company has not reported multi-organ approaches.

Forward-minded venture investor Founders Fund of San Francisco laments the “medieval” approach used in traditional pharmaceutical discovery. The right sources of capital combined with the right industry partnerships, both currently emerging, might give TissUse, Hurel, Hemoshear and other companies a path to preclinical testing that is both more accurate and more humane.

[Disclosure: TissUse is a client of CBT Advisors.]

Author: Steve Dickman

Steve Dickman is CEO of CBT Advisors, a life sciences consulting firm in Cambridge, Massachusetts. CBT Advisors works on product positioning and corporate strategy; communications and fund-raising materials; and market analysis based on research and expert interviews. Clients include public and private pharma and biotech companies as well as life science venture funds. Mr. Dickman publishes an industry blog, Boston Biotech Watch, that tracks industry, VC and technology trends. Before founding CBT Advisors in 2003, Mr. Dickman spent four years in venture capital with TVM Capital. There, Mr. Dickman’s deals included Sirna Therapeutics, sold to Merck in 2006 for $1.1 billion. Earlier, he was a Knight Science Journalism Fellow at MIT, a freelance contributor to The Economist, Discover, Science, GEO and Die Zeit and the founding bureau chief for Nature in Munich, Germany. Fluent in German, Mr. Dickman received his biochemistry degree cum laude from Princeton University.