What Was Hyped, and What Fell Out of Favor, This Year in Biotech

Every year, Science magazine profiles its “Breakthrough of the Year.” People get excited. But what many readers don’t fully appreciate is that these discoveries—at least in biomedicine—are almost always decades away from turning into useful new drugs, diagnostics, or other products that advance human health.

There are, shall we say, kinks that need to be worked out behind the scenes in the biotech and pharmaceutical industries.

As industry veterans know all too well, biomedical discoveries tend to follow the “hype cycle” popularized by Gartner. Everything starts with a “technology trigger.” That’s followed by a “peak of inflated expectations,” as scientists, entrepreneurs, and investors let their imaginations run wild. Tough technical challenges then emerge and usher in the “trough of disillusionment.” Over time, a few people persevere, solving or mitigating the problems. The technology makes a comeback, entering the “slope of enlightenment.” Eventually, the once-tough problem is solved in everyday manufacturing practice, and the technology enters a mature phase known as the “plateau of productivity.”

This is a useful framework for thinking about biotech, especially when you consider how foundational technologies like monoclonal antibodies came to be.

This has clearly been an optimistic year in biotech. But it’s important not to get carried away. So I sought to compile a list of big ideas and plot them somewhere appropriate on Gartner’s “hype cycle” curve. I sought input from a handful of independent experts who read widely across their respective life science disciplines. Here’s my list of the technologies that entered the “Peak of Inflated Expectations” this year, those bottoming out in the “Trough of Disillusionment,” and those beginning to climb the “Slope of Enlightenment.”

The Peak of Inflated Expectations

CAR-T cell immunotherapy. This field is white-hot as 2013 comes to a close. The CAR or CAR-T acronym stands for “chimeric antigen receptor” modified T-cells. It’s all about a system that involves withdrawing blood from patients, isolating certain immune T cells in the lab, and using gene therapy to transform them so they seek and destroy cancer cells. These souped-up killer T cells then get re-infused into the body so they can keep gobbling and gobbling up cancer cells like in the old Atari “Pac-Man” video game, in the words of industry consultant Sally Church.

Preliminary clinical trials have shown that this method can completely wipe out tumors in more than 85 percent of patients with acute lymphoblastic leukemia—a startling response rate. Switzerland-based Novartis is putting its muscle behind this pioneering cell therapy work from the University of Pennsylvania. A new rival, Seattle-based Juno Therapeutics, raised $120 million in a Series A venture financing this month to develop competing technologies from the Fred Hutchinson Cancer Research Center, Seattle Children’s Research Institute, and Memorial Sloan-Kettering Cancer Center. Scientists still need to ask a lot of questions, like whether the side effect profile is acceptable, whether tumors will find a way to evade even these killer T cells, and whether the modified T-cells will “self-renew” for years in the body, and whether repeat infusions will be necessary. Nobody knows how long the complete remissions seen so far will last.

Antibody-based cancer immunotherapy. Everybody and their brother-in-law tried to jump onto the cancer immunotherapy rocket ship this year. Excitement peaked at the American Society of Clinical Oncology meeting in June, where Bristol-Myers Squibb, Merck, and Genentech/Roche all presented tantalizing preliminary data with targeted antibodies that aim for a molecular target known as PD-1 or PD-L1. The basic idea is to remove a cloaking mechanism tumors use to shield themselves from ordinary immune system surveillance that would kill them. These drugs don’t appear to help everybody, and researchers can’t predict which patients are likely to respond and which aren’t. But they have shown promise against multiple tumor types, and seem to produce long-lasting effects. That’s a big deal. Cancer cells often find a way to resist chemotherapies or targeted therapies. It may prove tougher to evade ongoing immune system surveillance. “Every Big Pharma has a program with an antibody directed against PD-1,” said Michael Houston, a Seattle-based consultant who specializes in peptide and oligonucleotide therapeutic development.

Microbiome-based therapies. Scientists know “virtually nothing about the microbiome,” geneticist David Botstein, formerly of Princeton University, told me recently. Yet, research teams are starting to learn a lot about the trillions of bacterial friends and enemies who co-exist in human guts, along with the trillions of cells that make up each human. Fecal transplants, icky as they may be, appear to be transplant “good bacteria” that help the body fight C.difficile infections. Deeper understanding of the microbiome is forcing scientists to re-think the broad use of antibiotics, which hammer all kinds of bacteria in the gut.

It’s still hard to say how this knowledge will be translated into products, but startups like Cambridge, MA-based Seres Health, South San Francisco-based Second Genome, Cambridge, MA-based Vedanta Biosciences, and South San Francisco-based AvidBiotics have all gathered some decent backing to go after a variety of new applications. Some entrepreneurs are experimenting with ideas of “live bacterial” cocktail drinks, which theoretically could restore balance in the microbiome. “It’s redefining what is a therapy,” said Paul Burke, a Cambridge, MA-based scientific consultant to startups and large biopharma companies.

Messenger RNA therapeutics. Quite a few companies have spent years developing drugs designed to work at the level of RNA, and disrupt the processes that create disease-related proteins. But Cambridge, MA-based Moderna Therapeutics broke onto the scene this year with a new idea for making messenger RNA therapies. These messenger RNA molecules carry the instructions for making proteins, which can take the form of enzymes, growth factors and other 3-D molecules that carry out most human bodily functions. The Moderna mRNA molecules are designed to be injected, get inside cells, and to stimulate the cellular machinery to make proteins that scientists know have therapeutic value. In theory, it’s another way of making insulin for diabetes, or erythropoeitin for anemia. Part of the trick is to make these drugs so they somehow don’t get immediately chewed up by enzymes in the body, and don’t provoke an immune defense reaction.

Moderna, which only emerged from stealth mode a year ago, has raked in an incredible $415 million in private equity investment, government support, and partnership dollars from AstraZeneca. The company has a long way to go on its drug development odyssey. It hasn’t even yet entered clinical trials. Moderna excites people because it represents the possibility of a whole new platform for drugmaking, which theoretically could sidestep much of the expense and hassle of biologics manufacturing.

Gene editing. This idea that you can “edit out” genetic abnormalities to strike at disease at its roots is still taking me some getting used to. As my colleague Ben Fidler wrote in a story about Cambridge, MA-based Editas Medicine, “Editas’ goal is to essentially target disorders caused by a singular genetic defect, and using a proprietary in-house technology, create a drug that can ‘edit’ out the abnormality so that it becomes a normal, functional gene—potentially, in a single treatment.” This company has corralled $43 million in its Series A investment from three big VCs in Boston biotech: Polaris Partners, Third Rock Ventures, and Flagship Ventures. Read Ben’s story for more of the details on Editas.

The Trough of Disillusionment

Consumer genetic testing. Mountain View, CA-based 23andMe, the company with a big idea for connecting consumers with their genetic data, is stuck in the penalty box with the FDA. 23andMe looked pretty foolish in the eyes of many savvy observers this fall when the agency issued a stern warning letter. The FDA told 23andMe to stop marketing its Personal Genome Service to consumers based on its ability to help people manage their health. The company hasn’t

Author: Luke Timmerman

Luke is an award-winning journalist specializing in life sciences. He has served as national biotechnology editor for Xconomy and national biotechnology reporter for Bloomberg News. Luke got started covering life sciences at The Seattle Times, where he was the lead reporter on an investigation of doctors who leaked confidential information about clinical trials to investors. The story won the Scripps Howard National Journalism Award and several other national prizes. Luke holds a bachelor’s degree in journalism from the University of Wisconsin-Madison, and during the 2005-2006 academic year, he was a Knight Science Journalism Fellow at MIT.