Ignoring the Old Math, a San Francisco Startup Reinvents UAV Wings

The co-founders of Vires Aero. Left to right: Zach Hargreaves, Harshil Goel, Jordan Greene.

What if you could eliminate turbulence around an aircraft wing and get twice as much lift for the same amount of engine power—or five or 10 times as much? What if the outer surfaces of a wing weren’t rigid, but were more like a living thing, moving relative to the wing’s interior parts?

To most aeronautical engineers, these questions would sound heretical, or ridiculous. But it turns out that if you go back to the fundamental mathematics of flight and start monkeying with assumptions engineers haven’t questioned in decades, some interesting possibilities arise.

At a garage in the Dogpatch neighborhood of San Francisco, a team of recent UC Berkeley grads is teasing out some of those possibilities. If their calculations hold up and their prototypes can be scaled up—and those are big ifs—it could cause airframe builders to rethink the whole concept of the wing.

The young founders of Vires Aero realize this is a big vision for a tiny startup, but they don’t have time for modesty. “Anytime I try to do any type of engineering, I want to be completely devoid of anything that has come before it,” says Vires co-founder and CEO Harshil Goel, a 2014 Berkeley graduate in math. “That comes from my mathematical ego. Mechanical engineers use a lot of calculus and partial differential equations that are over 100 years old. There is more sophisticated stuff out there that could create much more interesting developments.”

While the math is complicated, the basic idea Goel and his co-founders Jordan Greene and Zachary Hargreaves are testing is simple. Rigid wings with static surfaces usually create a wake of turbulence in the air around them, and that increases drag. By giving an aircraft wing a moving surface—in effect, wrapping a nylon conveyor belt around it—Goel and his team think they can delay onset of turbulence and, as a result, reduce drag and win back a measure of lift. And not a small measure: Vires Aero’s modified wings can carry up to 500 percent more weight, depending on factors like the angle of attack, Greene claims.

Star investor Tim Draper, who contributed $250,000 to Vires Aero’s $1 million seed funding round, has called the idea “the first true innovation in aviation since the jet engine.” That can probably be discounted as Silicon Valley bravado, and there’s actually a long history of experimentation with wing technologies that combat turbulence, from twisting “aeroelastic” wings to “circulation control” systems that emit compressed air to smooth out air flow. But it’s true that Goel and his co-founders—who see unmanned aerial vehicles (UAVs) as the first commercial market for the technology—are going back to first principles.

Goel, a math wunderkind, says he first got interested in aerodynamics in 2012, when he had a summer job at a wind tunnel facility at the Indian Institute of Technology Kanpur, in Uttar Pradesh. His supervisor knew that he was searching for tough math challenges, and told him to look at the phenomenon of boundary layer separation.

When air or water flows around a solid object such as a wing, viscous forces usually keep the molecules closest to the surface “attached”—moving in smooth parallel layers. This is called laminar flow. But sometimes friction at the wing surface causes the flow to become “detached,” forming tiny eddies and vortices. That’s boundary layer separation, and it gives rise to turbulent flow, increasing drag and decreasing lift.

In the traditional fluid-mechanics equations describing air around a wing, Goel explains, there’s an assumption called the “no-slip condition,” which dictates that air at the very surface of a wing has zero speed, due to friction. Some of that stalled air usually gets turned around and goes in the wrong direction, against the flow of the air above the wing, which is what starts the eddies.

Goel’s leap—he says it came to him one hot, sleepless night in Kanpur—was to modify the no-slip condition in the equations. “I said, well, okay, if this is zero, what happens if I made it some constant I could control?” he recounts. “Then, because the air is being essentially speeded up at the surface, it has more resistance to being turned around.”

In other words, if the wing surface were moving in the same direction as the air passing over, it might help stave off separation and maintain laminar flow. “The ‘holy crap’ moment, one morning at 3 am or 4 am, was that we could build a really awesome plane around this,” Goel says. (Mathematically, giving a wing a moving surface also changes a quantity called circulation, further increasing lift.) Here’s an animation produced by Vires Aero that makes the whole concept clearer.

VIRES Aero Promo from Jordan Greene on Vimeo.

Of course, it’s a long way from an idea and a pretty graphic to a working wing with a moving control surface. That’s the gap Vires Aero is now working to close.

Goel knew Greene, a business major, from their freshman dorm at Berkeley. Greene, in turn, knew Hargreaves, a computer science major with lab experience programming swarms of small UAVs, from an engineering class they’d taken together. The three decided to team up. “As soon as I saw some of the data Harshil was showing me, my ears started to perk up and I wanted to be involved,” Hargreaves says. “UAVs are a passion of mine, and I wanted to see if I could make a career out of a hobby.”

For its first few months, Vires worked from an incubator space at Lawrence Livermore National Laboratory, pursuing an unrelated idea Goel had dreamed up for a new type of vehicle transmission. They picked the name Vires because it means “forces” or “powers” in Latin; Greene says it was also an acronym for “virtually infinite rotary exponentiation system.”

But the wing idea proved much easier to explain to potential customers. “Everyone was telling us how amazing the drone market was going to be, and that we should definitely pursue that,” Greene says. “We said all right, let’s pivot.” (Which also meant a slight change under the hood: Vires now stands for “velocity injecting rotary enhancement system.”)

The Vires Aero team is hardly the first to consider the idea of building a system into wing surfaces to alter air flow. For decades, engineers have experimented with circulation control technology that prevents boundary layer separation by blowing compressed air through slots in a wing’s leading and trailing edges. But one longstanding problem with circulation control is that the compressed air is usually diverted from the engines. That decreases their power, which cancels out the added lift from the blowers.

The Vires Aero team felt they could achieve greater lift improvements at far less energy cost. To try the idea in the field, the company raised seed funding in 2013 from Draper Associates, Promus Ventures, and a group of angel investors. It also joined Lemnos Labs, the San Francisco-based hardware accelerator that has incubated companies in music, food, transportation, robotics, and even nanosatellite technology. At Lemnos, the Vires team has focused on building a prototype: a two-meter wing assembly with rip-stop nylon belts that attaches to a small remote-controlled drone.

Several times a week, the team goes to an open space and flies that craft at various speeds, weights, and angles of attack, gathering data that can be compiled into what Greene calls a “performance envelope.” Once the tests are done, the company will be able to predict how much the technology might increase the lift coefficient for other types of aircraft, Greene says.

Vires co-founders (L to R) Zach Hargreaves, Jordan Greene, and Harshil Goel test a prototype RC plane equipped with their belted wing. Photo courtesy of Vires Aero.
Vires co-founders (L to R) Zach Hargreaves, Jordan Greene, and Harshil Goel test a prototype RC plane equipped with their belted wing. Photo courtesy of Vires Aero.

“Customers always ask us the same thing: what can you do for us?” Greene says. “We say, tell us about your wing and we will tell you the performance specs we can get you.” Recently the startup began taking pre-orders for a kit called the Aquila MK-1 that will allow UAV makers to test the technology on their own.

One attraction of the belted-wing technology is that it can, in theory, be programmed to

Author: Wade Roush

Between 2007 and 2014, I was a staff editor for Xconomy in Boston and San Francisco. Since 2008 I've been writing a weekly opinion/review column called VOX: The Voice of Xperience. (From 2008 to 2013 the column was known as World Wide Wade.) I've been writing about science and technology professionally since 1994. Before joining Xconomy in 2007, I was a staff member at MIT’s Technology Review from 2001 to 2006, serving as senior editor, San Francisco bureau chief, and executive editor of TechnologyReview.com. Before that, I was the Boston bureau reporter for Science, managing editor of supercomputing publications at NASA Ames Research Center, and Web editor at e-book pioneer NuvoMedia. I have a B.A. in the history of science from Harvard College and a PhD in the history and social study of science and technology from MIT. I've published articles in Science, Technology Review, IEEE Spectrum, Encyclopaedia Brittanica, Technology and Culture, Alaska Airlines Magazine, and World Business, and I've been a guest of NPR, CNN, CNBC, NECN, WGBH and the PBS NewsHour. I'm a frequent conference participant and enjoy opportunities to moderate panel discussions and on-stage chats. My personal site: waderoush.com My social media coordinates: Twitter: @wroush Facebook: facebook.com/wade.roush LinkedIn: linkedin.com/in/waderoush Google+ : google.com/+WadeRoush YouTube: youtube.com/wroush1967 Flickr: flickr.com/photos/wroush/ Pinterest: pinterest.com/waderoush/