Ignoring the Old Math, a San Francisco Startup Reinvents UAV Wings

The co-founders of Vires Aero. Left to right: Zach Hargreaves, Harshil Goel, Jordan Greene.

respond to sensor data in near-real time. Hargreaves, whose research at Berkeley included a project to turn beetles into cyborg UAVs, is in charge of the needed software. “You have to take into account the angle the vehicle is at, the wind speed, the speed relative to the ground and the air, the pitch and yaw, the inertial moments; and according to all that you can adjust the system dynamically to perform optimally for that regime of air flow,” Hargreaves says. “That’s where I come into the equation, in terms of giving this wing a brain.”

The extra motors and processors in the Aquila wing add only add about 300 grams to its 3.4-kilogram mass, and the motors draw only about 5 to 10 percent of the power normally going to the drone’s propeller. It all pays off in terms of increased lift, Goel says.

The main complaints of many UAV buyers, he says, are that the craft can’t fly far enough and can’t carry enough weight. He does a back-of-the-envelope calculation to shows how Vires Aero could help with that headache. A Boeing ScanEagle, a UAV widely used by military organizations, weighs 18 kilograms and has a 22-kilogram maximum takeoff weight, so it can carry a 4-kilogram payload—say, cameras, radar, or other reconnaissance gear. If Vires Aero’s wings can double the craft’s lift coefficient, the new maximum take-off weight would be 44 kilograms, which means the ScanEagle could carry 26 kilograms, minus the weight of the new wing mechanism.

“You can play with the numbers, but it’s easy to see that the difference is astronomical,” Goel says.

Early wind tunnel experiments using green smoke illustrate how turbulent air flow over a wing (left) smooths out after the belt is activated (right). Image courtesy of Vires Aero.
Early wind tunnel experiments using green smoke illustrate how turbulent air flow over a Vires wing (left) smooths out after the belt is activated (right). Image courtesy of Vires Aero.

At this stage, Vires Aero is all about numbers, and testing whether the flight measurements live up to Goel’s projections. The company will also have to figure out how to handle everyday problems like malfunctions in the moving parts, water and dirt on the wings, and the like.

But even if the Aquila wing proves itself, the tiny company—which has only one full-time employee in addition to the three co-founders—probably won’t evolve into a full-fledged UAV manufacturer. More likely, Greene says, it will just make wings, or license the technology to other companies. The company is going to focus for the time being on small craft, up to ScanEagle size—the Boeing craft has a 3-meter wingspan. Beyond that, it would need to partner with, or raise capital from, larger aerospace companies.

But those problems are in the future. Right now, the biggest challenge for Vires Aero is just proving that Goel’s late-night math breakthrough in Kanpur will work in practice.

“People are very reluctant to move away from the conventional processes that have been used for the last 100 years,” Greene says. “Trying to convince people who are not aerospace engineers and mathematicians that this will work is important, and is a feat in itself.”

Author: Wade Roush

Between 2007 and 2014, I was a staff editor for Xconomy in Boston and San Francisco. Since 2008 I've been writing a weekly opinion/review column called VOX: The Voice of Xperience. (From 2008 to 2013 the column was known as World Wide Wade.) I've been writing about science and technology professionally since 1994. Before joining Xconomy in 2007, I was a staff member at MIT’s Technology Review from 2001 to 2006, serving as senior editor, San Francisco bureau chief, and executive editor of TechnologyReview.com. Before that, I was the Boston bureau reporter for Science, managing editor of supercomputing publications at NASA Ames Research Center, and Web editor at e-book pioneer NuvoMedia. I have a B.A. in the history of science from Harvard College and a PhD in the history and social study of science and technology from MIT. I've published articles in Science, Technology Review, IEEE Spectrum, Encyclopaedia Brittanica, Technology and Culture, Alaska Airlines Magazine, and World Business, and I've been a guest of NPR, CNN, CNBC, NECN, WGBH and the PBS NewsHour. I'm a frequent conference participant and enjoy opportunities to moderate panel discussions and on-stage chats. My personal site: waderoush.com My social media coordinates: Twitter: @wroush Facebook: facebook.com/wade.roush LinkedIn: linkedin.com/in/waderoush Google+ : google.com/+WadeRoush YouTube: youtube.com/wroush1967 Flickr: flickr.com/photos/wroush/ Pinterest: pinterest.com/waderoush/