Quick, How Might the Alien Spacecraft Work?

to the arc of the story for the movie, and what the aliens as well as humans must be feeling at different points. I try to talk about what it’s like to figure stuff out in science. Then I realize the best thing is to actually show it a bit, by doing some Wolfram Language live coding. And it turns out that the way the script is written right then, Jeremy is actually supposed to be on camera using Wolfram Language himself (just like—I’m happy to say—so many real-life physicists do).

Christopher shows some of the code he’s written for the movie, and how the controls to make it dynamic work. Then we start talking about how one sets about figuring out the code. We do some preliminaries. Then we’re off and running, doing live coding.

What to Say to the Aliens

“Arrival” is partly about interstellar travel. But it’s much more about how we’d communicate with the aliens once they’ve showed up here. I’ve actually thought a lot about alien intelligence. But mostly I’ve thought about it in a more difficult case than in Arrival—where there are no aliens or spaceships in evidence, and where the only thing we have is some thin stream of data, say from a radio transmission, and where it’s difficult even to know if what we’ve got should be considered evidence of “intelligence” at all (remember, for example, that it often seems that even the weather can be complex enough to seem like it “has a mind of its own”).

But in “Arrival”, the aliens are right here. So then how should we start communicating with them? We need something universal that doesn’t depend on the details of human language or human history. Well, OK, if you’re right there with the aliens, there are physical objects to point to. (Yes, that assumes the aliens have some notion of discrete objects, rather than just a continuum, but by the time they’ve got spaceships and so on, that seems like a decently safe bet.) But what if you want to be more abstract?

Well, then there’s always mathematics. But is mathematics actually universal? Does anyone who builds spaceships necessarily have to know about prime numbers, or integrals, or Fourier series? It’s certainly true that in our human development of technology, those are things we’ve needed to understand. But are there other (and perhaps better) paths to technology? I think so.

For me, the most general form of abstraction that seems relevant to the actual operation of our universe is what we get by looking at the computational universe of possible programs. Mathematics as we’ve practiced it does show up there. But so do an infinite diversity of other abstract collections of rules. And what I realized a while back is that many of these are very relevant—and actually very good—for producing technology.

So, OK, if we look across the computational universe of possible programs, what might we pick out as reasonable universals to start an abstract discussion with aliens who’ve come to visit us?

Once one can point to discrete objects, one has the potential to start talking about numbers, first in unary, then perhaps in binary. Here’s the beginning of a notebook I made about this for the movie. The words and code are for human consumption; for the aliens there’d just be “flash cards” of the main graphics:

"Arrival" communication

 

The Movie Process

I’ve spent a lot of my life doing big projects—and I’m always curious how big projects of any kind are organized. When I see a movie I’m one of those people who sits through to the end of the credits. So it was pretty interesting for me to see the project of making a movie a little closer up in “Arrival”.

In terms of scale, making a movie like “Arrival” is a project of about the same size as releasing a major new version of the Wolfram Language. And it’s clear there are some similarities—as well as lots of differences.

Both involve all sorts of ideas and creativity. Both involve pulling together lots of different kinds of skills. Both have to have everything fit together to make a coherent product in the end.

In some ways I think movie-makers have it easier than us software developers. After all, they just have to make one thing that people can watch. In software—and particularly in language design—we have to make something that different people can use in an infinite diversity of different ways, including ones we can’t directly foresee. Of course, in software you always get to make new versions that incrementally improve things; in movies you just get one shot.

And in terms of human resources, there are definitely ways software has it easier than a movie like “Arrival”. Well-managed software development tends to have a somewhat steady rhythm, so one can have consistent work going on, with consistent teams, for years. In making a movie like “Arrival” one’s usually bringing in a whole sequence of people—who might never even have met before—each for a very short time. To me, it’s amazing this can work at all. But I guess over the years many of the tasks in the movie industry have become standardized enough that someone can be there for a week or two and do something, then successfully hand it on to another person.

I’ve led a few dozen major software releases in my life. And one might think that by now I’d have got to the point where doing a software release would just be a calm and straightforward process. But it never is. Perhaps it’s because we’re always trying to do majorly new and innovative things. Or perhaps it’s just the nature of such projects. But I’ve found that to get the project done to the quality level I want always requires a remarkable degree of personal intensity. Yes, at least in the case of our company, there are always extremely talented people working on the project. But somehow there are always things to do that nobody expected, and it takes a lot of energy, focus and pushing to get them all together.

At times, I’ve imagined that the process might be a little like making a movie. And in fact in the early years of Mathematica, for example, we even used to have “software credits” that looked very much like movie credits—except that the categories of contributors were things that often had to be made up by me (“lead package developers”, “expression formatting”, “lead font designer”, …). But after a decade or so, recognizing the patchwork of contributions to different versions just became too complex, and so we had to give up on software credits. Still, for a while I thought we’d try having “wrap parties”, just like for movies. But somehow when the scheduled party came around, there was always some critical software issue that had come up, and the key contributors couldn’t come to the party because they were off fixing it.

Software development—or at least language development—also has some structural similarities to movie making. One starts from a script—an overall specification of what one wants the finished product to be like. Then one actually tries to build it. Then, inevitably, at the end when one looks at what one has, one realizes one has to change the specification. In movies like “Arrival”, that’s post-production. In software, it’s more an iteration of the development process.

It was interesting to me to see how the script and the suggestions I made for it propagated through the making of “Arrival”. It reminded me quite a lot of how I, at least, do software design: everything kept on getting simpler. I’d suggest some detailed way to fix a piece of dialogue. “You shouldn’t say [the Amy Adams character] flunked calculus; she’s way too analytical for that.” “You shouldn’t say the spacecraft came a million light years; that’s outside the galaxy; say a trillion miles instead.” The changes would get made. But then things would get simpler, and the core idea would

Author: Stephen Wolfram

Stephen Wolfram is a distinguished scientist, inventor, author, and business leader. He is the creator of Mathematica, the author of A New Kind of Science, the creator of Wolfram|Alpha, and the founder and CEO of Wolfram Research. Wolfram has been president and CEO of Wolfram Research since its founding in 1987. In addition to his business leadership, Wolfram is deeply involved in the development of the company's technology, and continues to be personally responsible for overseeing all aspects of the functional design of the core Mathematica system. Wolfram has a lifelong commitment to research and education. In addition to providing software for a generation of scientists and students, Wolfram's company maintains some of the web's most visited sites for technical information. Wolfram is also increasingly active in defining new directions for education, especially in the science he has created. Building on Mathematica, A New Kind of Science, and the success of Wolfram Research, Wolfram in May 2009 launched Wolfram|Alpha—an ambitious, long-term project to make as much of the world's knowledge as possible computable, and accessible to everyone.