CEO Gerngross Says Deals Around Adimab’s Yeast-Based Antibody Discovery Technology Are Progressing

Adimab is taking an uncommon approach to exploiting the value of its antibody-discovery technology. The Lebanon, NH-based biotech startup has no plans to ever develop its own drugs—CEO Tillman Gerngross says he thinks Adimab can become successful with income from drug-discovery and licensing deals alone.

That is the level of confidence that Gerngross apparently has in Adimab’s proprietary method for significantly streamlining and expediting how antibody drugs are discovered. Investors Polaris Venture Partners, SV Life Sciences, Borealis Ventures, and OrbiMed Advisors have bet millions that the confidence is well-founded. Adimab closed its third round of financing late last year, but it hasn’t disclosed the amount. When I visited the company this week, Gerngross told me that sometime around the end of March he expects to disclose a list of discovery deals his firm has landed.

A lot of attention is paid to how antibody drugs are discovered, as such medications generate tens of billions of dollars in annual sales. South San Francisco-based Genentech (NASDAQ:[[ticker:DNA]]), for one, reported revenue of about $4.5 billion in 2007 on U.S. sales of its top two antibody drugs, the cancer treatment bevacizumab (Avastin) and rituximab (Rituxan), which is approved for treating lymphoma and rheumatoid arthritis. However, companies in pursuit of new antibody drugs must often pay millions of dollars to multiple firms—such as Cambridge, MA-based biotech firm Dyax (NASDAQ:[[ticker:DYAX]])—to license antibody-discovery technologies.

Adimab wants to provide one-stop shopping for these firms. The startup has a yeast-based discovery technology that mimics the human immune system and doesn’t require the use of mice or Dyax’s widely used “phage display” method to identify antibodies with the potential to treat diseases.

Gerngross says the firm’s synthetic immune system consists of yeast cells that are genetically engineered to produce some 10 billion different human antibodies. Those antibodies are attached to the surface of the cells that produce them. Next, the firm adds a potential drug target—a protein from breast cancer cells, say—that has been tagged with florescent dye. The antibodies that bind to those tagged target proteins are then identified as potential treatments for the cancer. The yeast cells that made those particular antibodies are then collected to make more of the antibodies for further testing.

The entire process takes as few as

Author: Ryan McBride

Ryan is an award-winning business journalist who contributes to our life sciences and technology coverage. He was previously a staff writer for Mass High Tech, a Boston business and technology newspaper, where he and his colleagues won a national business journalism award from the Society of American Business Editors and Writers in 2008. In recent years, he has made regular TV appearances on New England Cable News. Prior to MHT, Ryan covered the life sciences, technology, and energy sectors for Providence Business News. He graduated with honors from the University of Rhode Island in 2001 with a bachelor’s degree in communications. When he’s not chasing down news, Ryan enjoys mountain biking and skiing in his home state of Vermont.