A Shortcut in Engine Design: Specialized Software Models Soot Formation

In Fairbanks, AK (where I spent a year after I graduated from college), winter temperatures can plunge to minus 40 degrees (F) for weeks at a time, creating ideal conditions for a local phenomenon called “ice fog.”

When temperatures get that cold, the air can’t hold much water vapor. Automotive engine exhaust is mostly water vapor, so emissions go from a maximum cylinder temperature of, say, 3,100 degrees (F) to minus 40 in a matter of seconds. Vapor cooled that fast forms tiny ice particles so small that 10 could fit side-by-side on the edge of a piece of paper. They also are so light that they remain suspended in mid-air—and of course each one is coated with fine soot particles. In short, the ice fog that eddies and curls through the winter streets of Fairbanks is a surreal cloud of pale brown murkiness.

It might seem like a remote problem, but the sub-arctic temperatures in Fairbanks visually illustrate a process that happens much less visibly with internal combustion engines everywhere.

Over the past decade or so, air quality regulations have focused chiefly on limiting the overall amount of soot emitted by internal combustion engines, but recent studies indicate that soot particles smaller than 100 nanometers can be especially harmful to human health. As a result, new “Euro5+” environmental regulations set to take effect next year are intended to substantially reduce the size and number of soot particles emitted by gasoline and diesel-powered cars and light trucks throughout Europe.

Some industry observers say it’s only a matter of time before U.S. environmental regulators impose similar restrictions on fine soot emissions.

Still, reducing soot emissions represents an unusual challenge for engine makers, in part because the targeted soot particulates in engine exhaust are nano-sized flecks of nothingness. (For the sake of comparison, the thickness of a human hair ranges from 50,000 to 100,000 nanometers.) Current methods of engine design rely more or less on the empirical results of trial and error, which can be a costly and time-consuming process when it comes to building and testing a series of engine prototypes.

So it was a welcome breakthrough when San Diego-based Reaction Design said recently it had led a consortium in developing software that can accurately simulate the formation of soot particulates during internal combustion. Engine designers can use the modeling software to

Author: Bruce V. Bigelow

In Memoriam: Our dear friend Bruce V. Bigelow passed away on June 29, 2018. He was the editor of Xconomy San Diego from 2008 to 2018. Read more about his life and work here. Bruce Bigelow joined Xconomy from the business desk of the San Diego Union-Tribune. He was a member of the team of reporters who were awarded the 2006 Pulitzer Prize in National Reporting for uncovering bribes paid to San Diego Republican Rep. Randy “Duke” Cunningham in exchange for special legislation earmarks. He also shared a 2006 award for enterprise reporting from the Society of Business Editors and Writers for “In Harm’s Way,” an article about the extraordinary casualty rate among employees working in Iraq for San Diego’s Titan Corp. He has written extensively about the 2002 corporate accounting scandal at software goliath Peregrine Systems. He also was a Gerald Loeb Award finalist and National Headline Award winner for “The Toymaker,” a 14-part chronicle of a San Diego start-up company. He takes special satisfaction, though, that the series was included in the library for nonfiction narrative journalism at the Nieman Foundation for Journalism at Harvard University. Bigelow graduated from U.C. Berkeley in 1977 with a degree in English Literature and from the Columbia University Graduate School of Journalism in 1979. Before joining the Union-Tribune in 1990, he worked for the Associated Press in Los Angeles and The Kansas City Times.