The Kyoto Prize Symposium is now in full flower in San Diego, highlighting Japan’s highest international award for honoring the people who have made significant contributions to the scientific, cultural, and spiritual betterment of mankind.
The Kyoto Prize was first awarded in 1985, and for many it has become the most prestigious award available in fields that are not traditionally honored with a Nobel Prize. It also has become the only major international award with celebrations in two different hemispheres.
At an elaborate ceremony in Kyoto, Japan, on November 10, the three 2014 Kyoto Prize Laureates received their formal honors, which include a diploma, a 20-karat gold Kyoto Prize medal, and a cash award of 50 million yen (about $416,000 at the current exchange rate). The Kyoto Prize Laureates convened again in San Diego for a symposium that began yesterday and features free public lectures by three of the foremost scientists, engineers, and artists of our time.
As part of the celebration, I got an opportunity to put a few questions to Robert Langer, an Institute Professor at MIT (and a Boston Xconomist and prolific entrepreneur), who received the 2014 Kyoto Prize in Advanced Technology. The Kyoto Prize in Basic Sciences was awarded to Edward Witten, a theoretical physicist at Princeton’s Institute for Advanced Study; and the Kyoto Prize in Arts and Philosophy went to 89-year-old Fukima Shimura, a textiles artist best known as the creator of the tsumugi kimono.
Langer, 66, was cited as a founder of the field of tissue engineering, and for pioneering methods that use biodegradable polymers to form “scaffolds” upon which new tissues and even organs can be grown. Langer’s Kyoto Prize also notes his development for innovative and unique drug delivery technologies for the controlled release of medicines to directly target tumors and disease sites. Langer’s 2014 Kyoto Prize Commemorative Lecture in Advanced Technology is here.
Here is a condensed transcript of our conversation:
Xconomy: Was the Kyoto Prize awarded in recognition of your body of work, or was it for a particular accomplishment?
Robert Langer: I don’t know for sure because I wasn’t involved, but my sense from reading what they wrote was that it was for the body of work in drug delivery and tissue engineering… We’ve probably done a little more on drug delivery. Largely, what we’ve done is create new biomaterials for many different things, for drug delivery systems, nanotechnology, ways of creating new tissues and organs, and other things.
X: Could you sketch out some of the likely areas of innovation that you see in both drug delivery and in tissue engineering?
RL: In drug delivery, I think some of the really exciting things are in the area of nanotechnology, particularly with respect to enabling new kinds of drugs to be broadly useful… For example, delivering siRNA, delivering mRNA, some of the gene editing approaches. That’s one of the very, very exciting areas—targeted drug delivery and using nanotechnology to get the drug into your cells.
Other areas that are very exciting [involve] smart delivery systems. One example that we’re involved with is creating these intelligent microchips that can be put in the body, and someday have sensors on them, so they can deliver drugs in response to specific signals in the body.
A third area is what I call non-invasive delivery. Could you deliver large molecules or more complex molecules, by the oral route or the trans-dermal route, or pulmonary route? All those things are very exciting.
Finally, [an area] I think is very important is extending the kinds of things we’ve done in new ways for the Third World. Could you, for example, improve patient compliance by