Beaming Power to UAVs, Space Elevators, and Someday, Earth: The LaserMotive Plan

Think it’s possible to shoot down a swarm of buzzing mosquitoes in mid-air? Or maybe you want to power up a remote flying vehicle? Tom Nugent is your man. The Seattle-area entrepreneur just might be the most versatile guy with a laser you’ve ever met.

Yes, a laser. Until recently, Nugent worked in the laboratory of Bellevue, WA-based Intellectual Ventures, the invention company led by Nathan Myhrvold, where one of his projects was the so-called “photonic fence.” This effort has gotten lots of media attention, most recently for an impressive demo at the TED conference in February. That’s where Myhrvold showed a video of a laser burning the wings off a flying mosquito in super slow-motion. The idea is this technology, implemented on a larger scale, could help prevent the spread of malaria or protect crops against flying pests.

But Nugent’s focus now is on something that might be more practical: power beaming. That means using lasers to deliver energy to remote sensors, vehicles, or base stations. It’s a two-way trick: the receiver has to have a solar cell to convert the laser’s energy into electricity. But as long as the solar cell is viable, the technology could be useful in any situation where installing a wire is impractical, where batteries run down, or where it’s too expensive to truck in fuel.

That’s really just the beginning, to Nugent’s mind. One of his ultimate goals is to be able to beam large amounts of solar power to Earth from space, presumably to help solve global-scale energy problems. For now, though, he’ll settle for beaming power to unmanned aerial vehicles (UAVs) and other remote devices, including very early technology that could help scientists develop something called a space elevator. These ideas, in sum, have turned into a small company called LaserMotive, based in Kent, WA.

Before dismissing these projects as far-fetched, a little background is required. The idea of power beaming has been around for decades. But advances in cheaper and more energy-efficient diode lasers have made it possible to pursue the idea commercially in the past few years. Even the rise of laser hair removal products (which you might see on late night TV) have helped things move forward. So in 2007, Nugent and fellow physicist (and Intellectual Ventures veteran) Jordin Kare, an expert on laser rocket propulsion and optics who worked on the “Star Wars” nuclear-missile defense system in the 1980s—decided to make a business out of power beaming, and co-founded LaserMotive.

“We think we can produce revenue while we get experience,” says Nugent, LaserMotive’s president.

LaserMotive robot for NASA's Power Beaming Challenge

Their first project: tackling the power beaming aspect of NASA’s “Space Elevator Games.” If you don’t know what a space elevator is, that’s OK—it doesn’t exist yet. The über-futuristic idea is to have a cable anchored to the ground, extending thousands of miles into space, that could be used to launch payloads into orbit. The space end would be unattached, and the Earth’s rotation would keep it taut so a robot “elevator” could move up and down the cable, carrying equipment. Sure, this would take billions of dollars and a few decades to get working, but it could ultimately make space operations much cheaper than using rockets. That’s the idea, at least.

If a space elevator is ever going to work, it will need power at multiple steps along the way. So, at “Level 1” of the NASA Power Beaming Challenge, held last November in Mojave, CA, Nugent and Kare’s team used a ground-based infrared laser to beam energy to specially designed solar cells aboard an 11-pound robot (see photo, left) driven by an electric motor. (All power must come from the ground.) The robot climbed a 900-meter length of metal cable suspended from a helicopter. Nugent and Kare’s was the only team to make it to the top with an average climbing speed of more than 2 meters per second—their robot went nearly 4 meters per second (9 mph)—beating out two other teams, who failed to reach the top. The prize was $900,000 (before taxes, Nugent laments—yes, it’s that time of year).

The upcoming “Level 2” competition will be held later this year,

Author: Gregory T. Huang

Greg is a veteran journalist who has covered a wide range of science, technology, and business. As former editor in chief, he overaw daily news, features, and events across Xconomy's national network. Before joining Xconomy, he was a features editor at New Scientist magazine, where he edited and wrote articles on physics, technology, and neuroscience. Previously he was senior writer at Technology Review, where he reported on emerging technologies, R&D, and advances in computing, robotics, and applied physics. His writing has also appeared in Wired, Nature, and The Atlantic Monthly’s website. He was named a New York Times professional fellow in 2003. Greg is the co-author of Guanxi (Simon & Schuster, 2006), about Microsoft in China and the global competition for talent and technology. Before becoming a journalist, he did research at MIT’s Artificial Intelligence Lab. He has published 20 papers in scientific journals and conferences and spoken on innovation at Adobe, Amazon, eBay, Google, HP, Microsoft, Yahoo, and other organizations. He has a Master’s and Ph.D. in electrical engineering and computer science from MIT, and a B.S. in electrical engineering from the University of Illinois, Urbana-Champaign.