San Diego’s Synthorx Adds To Genetic Alphabet, Aims for Bio-Products

DNA 3 helix (Depositphotos-chromatika2)

[Corrected 5/7/14, 2 pm See below.] A group of scientists in San Diego who found a way to insert synthesized nucleotides into DNA—and who succeeded in coaxing the synthetic DNA to replicate in bacteria—have founded a new company to use the technology to make improved drugs and bio-products.

Their breakthrough in synthetic biology, described in research published today in the journal Nature, is expected to multiply the genetic permutations that Nature May 8, 2014enable living cells to produce proteins. Actual products based on the early-stage technology are no sure thing, of course, but San Diego-based Synthorx, says eventually it could provide important new tools for developing new, large-molecule drugs, vaccines, diagnostics, and nanomaterials.

[Clarifies and corrects the gene expression process.] DNA is made of four standard units, or nucleotides (A, C, T, and G). Strung together, the nucleotides provide instructions for the cellular machinery that builds proteins out of amino acids, with each group of three letters, or “codon,” specifying one of 20 amino acid building blocks. But a team led by Floyd Romesberg of The Scripps Research Institute has added two synthetic nucleotides, dubbed X and Y, to the DNA alphabet. Since more letters makes for more possible codons, the researchers say the technology could allow them to engineer organisms capable of incorporating a variety of synthetic amino acids—up to 152 of them—into their proteins, creating a host of proteins with new functions.

“What we’ve done is create a synthetic base pair that functions alongside natural DNA,” Romesberg said in a phone interview. The ability to insert a synthetic base pair in DNA, and to replicate the altered DNA in E. coli bacteria without changes, expands the genetic alphabet to increase the amount of information that can be stored in DNA. The research published today in Nature also shows that DNA repair systems that remove defective nucleotides from DNA will accept the synthetic X-Y nucleotides in the DNA. As a result, he said, “We have created the first organism that stores increased genetic information.”

TSRI Associate Professor of Chemistry Floyd Romesberg
Floyd Romesberg

An associate professor of chemistry, Romesberg is focused on biological and biophysical chemistry, particularly on the processes affected by the forces of evolution. He says the long-term goal of the work that began 14 years ago would apply basic principals of evolution to materials and drug development. “One could imagine making a bunch of DNA that was all slightly different, and then giving cells each one copy,” Romesberg said. “The cells then make whatever that DNA encoded.”

After demonstrating that cells can accommodate the synthetic DNA, Romesberg said the next step would be to use synthetic DNA to make amino acids that don’t exist in nature. “You have an orthogonal, clean set of new information—a new alphabet—that enables you to write new works,” he said. “We’re not there yet, but that’s the direction we’re headed.”

Romesberg was confident enough about taking that next step to found Synthorx to commercialize the technology—using the increased genetic alphabet to improve the discovery and development of new biotherapeutic drugs, diagnostics, and vaccines. One potential application is in drug screening, said Romesberg: “There is a starving need for new protein-based, therapeutic compound libraries that can be used to screen for new drugs.”

The idea is to encode E. coli (or other cells that produce therapeutic proteins) to create a much wider array of those proteins, all slightly different, than what is currently possible, giving drug

Author: Bruce V. Bigelow

In Memoriam: Our dear friend Bruce V. Bigelow passed away on June 29, 2018. He was the editor of Xconomy San Diego from 2008 to 2018. Read more about his life and work here. Bruce Bigelow joined Xconomy from the business desk of the San Diego Union-Tribune. He was a member of the team of reporters who were awarded the 2006 Pulitzer Prize in National Reporting for uncovering bribes paid to San Diego Republican Rep. Randy “Duke” Cunningham in exchange for special legislation earmarks. He also shared a 2006 award for enterprise reporting from the Society of Business Editors and Writers for “In Harm’s Way,” an article about the extraordinary casualty rate among employees working in Iraq for San Diego’s Titan Corp. He has written extensively about the 2002 corporate accounting scandal at software goliath Peregrine Systems. He also was a Gerald Loeb Award finalist and National Headline Award winner for “The Toymaker,” a 14-part chronicle of a San Diego start-up company. He takes special satisfaction, though, that the series was included in the library for nonfiction narrative journalism at the Nieman Foundation for Journalism at Harvard University. Bigelow graduated from U.C. Berkeley in 1977 with a degree in English Literature and from the Columbia University Graduate School of Journalism in 1979. Before joining the Union-Tribune in 1990, he worked for the Associated Press in Los Angeles and The Kansas City Times.